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Chapter 1

Introduction

The p-adic numbers were invented and introduced to number theory by
Kurt Hensel1 around the year 1900 - motivated by the idea of bringing the
powerful tool of power series to this area of mathematics. In his book,
[Hen08], he defines p-adic numbers as formal objects as follows: “[...] von
einer p-adischen Zahl will ich jede Reihe: c0 + c1p + c2p

2 + c3p
3 + . . . mit

modulo p reduzierten Koeffizienten, [...], verstehen, [...] .”. In the following
chapters we want to give an introduction to Hensel’s numbers and some of
his most famous ideas and theorems.

Hensel’s doctoral supervisor was Leopold Kronecker2 who once said “Die
ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk”.
Thus, by defining the p-adic numbers as the set of all Laurent3 series in p,
the student came true to his masters vision.

At first Hensel was mainly interested in applying his new theory to the
theory of numbers, especially the theory of quadratic forms, but later on
found satisfaction from studying the properties of the field p-adic numbers
by itself.

Influenced by this new theory, Ernst Steinitz4 presented, in the year
1910, the first abstract algebraic definition of a field in his paper Algeb-
raische Theorie der Körper. Two years later, József Kürschák5 founded the

1German mathematician (* 1861 in Königsberg in Preußen, today Kaliningrad, Rus-
sia; † 1941 in Marburg).

2German mathematician (* 1823; in Legnica, today a town in the Legnica Voivode-
ship in Poland; † 1891 in Berlin).

3Pierre Alphonse Laurent, French mathematician (* 1813 in Paris; † 1854 ibidem).
4German mathematician (* 1871 in Laurahütte, today Siemianowice Ślas̨kie in the

Sileasian Voivodeship, Poland; † 1928 in Kiel).
5Hungarian mathematician (* 1864 in Budapest; † 1933 ibidem).
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theory of valuations by giving a first axiomatic definition of a valuation.
Our first chapter gives an introduction to those topics.

Another important contribution to the p-adic theory was published in
1917 by Aleksandr Markovic̆ Ostrovskij6, cataloguing all the possible valu-
ations on Q, which was one of the most important founding stones of the
theory of p-adic analysis. We will discuss his theorem in the second chapter.

Last but not least, even Helmut Hasse7, one of the greatest algebraist
and number theorist of his time, was influenced by Hensel’s p-adic theory.
In 1920 he went to Marburg to study under Hensel himself and in the month
of October of the same year he discovered his famous local-global principle
which states that some equations which have local solutions in R and Qp,
for each prime number p, have a global solution in Q as well. This famous
theorem, which showed the enormous potential of Hensel’s new numbers,
will be mentioned in the third chapter of this exposure.

It might be interesting to note that the modern p-adic theory has man-
ifold applications in the world of physics as well. In chapter three we will
briefly mention one of them, related to high-energy physics, but the p-adic
numbers also find applications in quantum physics, string theory, molecular
biology and chaotic physical systems.

The general outline of this introduction to p-adic numbers follows [Kat].

1.1 Notation
Throughout this text P will denote the set of all prime numbers.

6Russian mathematician (* 1893 in Kiev, today Ukraine; † 1986 in Montagnola,
Switzerland).

7German mathematician (* 1898 in Kassel; † 1979 in Ahrensburg).



Chapter 2

Topology of ultrametric spaces

The language of general topology is well known to mathematicians and the
concept of valuations introduces this language into the theory of algebraic
numbers in a very natural way. We will give a brief introduction to this
theory and illustrate a few connections between valuation theory, topology
and algebra, but we will not go beyond the ideas that we need to later
on introduce the field of p-adic numbers. For readers who are interested
in the more general theory of valuations we refer to chapter 1 of [O’M99].
For a thorough introduction into topological preliminaries and continuous
functions, we refer to [HS65].

2.1 Introduction to the theory of valuations
Definition 2.1.1. Let K be a field. A mapping | | : K → R is called an
absolute value on K if the following properties hold for all x, y ∈ K.

1. |x| ≥ 0 and |x| = 0⇔ x = 0,
2. |xy| = |x| |y| and
3. |x+ y| ≤ |x|+ |y|.

The third property is called triangle inequality.

Example 2.1.2. • On K = R we have the usual definition of the ab-
solute value: |x| = x if x ≥ 0 and −x else.
• On K = C we have the well-known definition of the absolute value
|z| =

√
x2 + y2, for z = x+ iy ∈ C, x, y ∈ R.

• On any field K we have the discrete absolute value δK(x) := |x| = 1
if x 6= 0 and 0 else. This is clearly an absolute value, but it is also
clearly boring.

3
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Remark 2.1.3. Finite fields only possess the discrete absolute value, as for
x ∈ Fq, q = pn, p ∈ P, we have |x|q−1 = |xq−1| = |1| = 1.

Proposition 2.1.4. Let K be a field with an arbitrary absolute value | |
and x, y ∈ K, then:

1. |±1| = 1, the same holds for every root of unity,
2. |−x| = |x| and
3. ||x| − |y|| ≤ |x− y|.

The proof of those statements is straight forward and left as an exercise.

Definition 2.1.5. Let p ∈ P, n ∈ Z and ordp(n) be the largest integer such
that n = pordp(n)m. We call ordp(n) the p-adic order of n. For n = 0, we
set ordp(n) =∞.

The p-adic order of a rational number x ∈ Q, x = a
n
, a ∈ Z, b ∈ N with

gcd(a, b) = 1, is defined as ordp(x) = ord(a)− ordp(b).

Remark 2.1.6. For p ∈ P and arbitrary x, y ∈ Q the following two prop-
erties hold:
• ordp(xy) = ordp(x) + ordp(y) and
• ordp(x+ y) ≥ min{ordp(x), ordp(y)}.

It is easy to see that the p-adic order is well-defined, as for any c ∈ Z \ {0}
and x = a

b
= ac

bc
, we have

ordp(x) = ordp(ac)− ordp(bc) = ordp(a)− ordp(b).

Definition 2.1.7. Let p ∈ P be an arbitrary prime number. The p-adic
absolute value is defined as the map | |p : Q → R, x 7→ p− ordp(x) if x 6= 0
and |0|p = 0.

Proposition 2.1.8. | |p is an absolute value on Q, the so called p-adic
absolute value.

Proof. The value set of | |p is {pn | n ∈ Z}∪{0}, which shows the first prop-
erty. The second property is very easy to see as well, as |xy|p = pordp(xy) =
p− ordp(x)p− ordp(y) = |x|p |y|p.

Now for the triangle inequality, there is nothing to do for the cases
x = 0, y = 0 or x + y = 0. Thus consider x, y ∈ Q with x 6= 0 and
y 6= 0 and x + y 6= 0 and write x = a

b
and y = c

d
, a, c ∈ Z, b, d ∈ N

with gcd(a, b) = 1 = gcd(c, d), then x + y = ad+cb
bd

and ordp(x + y) =
ordp(ad+ cb)− ordp(b)− ordp(d), hence

ordp(x+ y) ≥ min{ordp(ad), ordp(cb)} − ordp(b)− ordp(d)
= min{ordp(a)− ordp(b), ordp(c)− ordp(d)}
= min{ordp(x), ordp(y)}.
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All told we have:

|x+ y|p = p− ordp(x+y)

≤ p−min{ordp(x),ordp(y)}

= max{p− ordp(x), p− ordp(y)}
= max{|x|p , |y|p}
≤ |x|p + |y|p .

We thusly see that the p-adic absolute value suffices a stronger condition
than the triangle inequality, namely the strong triangle inequality |x+ y|p ≤
max{|x|p , |y|p}, which leads to the following

Definition 2.1.9. An absolute value on a field K is called non-Archimedean
if it satisfies the strong triangle inequality. If it does not satisfy this inequal-
ity, it is called Archimedean.

As always in such situations, we want to know when equality holds:

Proposition 2.1.10. Let K be a field with a non-Archimedean absolute
value | |, then, for x, y ∈ K with |x| 6= |y|, we have |x+ y| = max{|x| , |y|}.

The proof is trivial and left to the reader, but we want to at least give
an example of this behaviour.

Example 2.1.11. Let p ∈ P be arbitrarily chosen and x, y ∈ Z with
ordp(x) = n and ordp(y) = m, that is, x = pnx

′ and y = pmy
′ with x′ , y′ ∈ Z

with p - x′y′. We have |x|p = p−n and |y|p = p−m.
Now let n < m, then |x|p > |y|p and x + y = pn(x′ + pm−ny

′). From
p - x′ it follows that p - x′ + pm−ny

′ and |x+ y|p = p−n = max{|x|p , |y|p}.
Now if n = m, then |x|p = |y|p and x + y = pn(x′ + y

′). We have
p - x′ and p - y′, but it is possible that p | x′ + y

′, thus ordp(x + y) ≥
n = min{ordp(x), ordp(y)} and we finally get |x+ y|p ≤ max{|x|p , |y|p} =
|x|p = |y|.

Remark 2.1.12. Let | | be a non-Archimedean absolute value on a field K.
We can then define a mapping ν : K → R ∪ {∞}, x 7→ − log |x|, if x 6= 0,
and∞ else, and we call ν a valuation on K. It has the following properties:

1. ∀x, y ∈ K : ν(x+ y) ≥ min{ν(x), ν(y)},
2. ∀x, y ∈ K : ν(xy) = ν(x) + ν(y) and
3. ν(x) =∞⇔ x = 0.
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Conversely, if ν is a valuation on a field K, then, for τ ∈ R with τ > 1,
the map | | : K → R, x 7→ τ−ν(x) defines an absolute value on K. Let
us put this into the context of p-adic absolute values. For x ∈ Q \ {0}
we have defined the p-adic absolute value as |x|p = p− ordp(x) and we get
ν(x) = ordp(x) · log p, thus the valuation ν only differs by a constant from
the p-adic order.

Definition 2.1.13. In the light of the previous remark - to be in conformity
with the likes of [Lam], [Ger08], [O’M99] and [Ser70] - we will henceforth
call | |p a p-adic valuation and denote by νp(x) := ordp(x) the p-adic order
of x. The pair (K, | |p) is then called a valuated field. By abuse of language,
we will also call an Archimedean absolute value on a field K a valuation on
K.

Non-Archimedean valuations can be used to describe divisibility prop-
erties in algebraic number theory, for example we have already seen that a
rational number is small under a p-adic valuation if it is highly divisible by
that prime number.
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2.2 Ultrametric spaces
In this section we will take a closer look at the topological properties of
fields with non-Archimedean valuations.

Definition 2.2.1. The pair (X, d) is called a metric space if, for x, y, z ∈
X, the following properties hold:

1. d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y,
2. d(x, y) = d(y, x) and
3. d(x, z) ≤ d(x, y) + d(y, z).

Definition / Remark 2.2.2. Let (K, | |) be a valuated field, then (K, d| |),
with d| |(x, y) := |x− y|, for all x, y ∈ K, is a metric space.

Definition 2.2.3. A metric space (X, d) with

d(x, z) ≤ max{d(x, y), d(y, z)},

for all x, y, z ∈ X, is called an ultrametric space, the corresponding metric
is called an ultrametric.

Proposition 2.2.4. Let (K, | |) be a valuated field, then d| | is an ultramet-
ric if and only if | | is a non-Archimedean valuation.

Proof. Let x, y, z ∈ K be arbitrarily chosen. If

d| |(x, z) ≤ max{d| |(x, y), d| |(y, z)},

then, if we set x = −y and z = 0, we get the desired property for the valu-
ation. Now if the valuation is non-Archimedean, then d| |(x, z) = |x− z| =
|x− y + y − z| ≤ max{|x− y| , |y − z|} = max{d| |(x, y), d| |(y, z)}.

Now we will take the first steps on the path down to the crazy topological
world of ultrametric spaces, as in such a space, each triangle is isosceles with
at most one shortest side, c.f. Proposition 2.1.10.

Proposition 2.2.5. Let (X, d) be an ultrametric space and x, y, z ∈ X. If
d(x, y) 6= d(y, z), then d(x, z) = max{d(x, y), d(y, z)}.

Definition 2.2.6. Let (X, d) be a metric space, c ∈ X and r ∈ R∗+. We
denote the open, resp. closed, ball with radius r and centre c by

Br(c) := {x ∈ X | d(x, c) < r}

and
Br(c) := {x ∈ X | d(x, c) ≤ r}
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respectively.
Now let U ⊂ X be a subset of X. U is called open if and only if

∀x ∈ U∃δ > 0 : Bδ(x) ⊆ U . U c := X \ U defines the complement of U and
we call U closed if and only if U c is open.

A point u ∈ U is a boundary point if for all ε > 0: Bε(u) ∩ U 6= ∅ and
Bε(u) ∩ U c 6= ∅. We define the set of all boundary points of U with δU .

We define the diameter of U as diam(U) := sup{d(x, y) | x, y ∈ U} and
we call U bounded, if and only if diam(U) <∞.

For two subsets U1, U2 ⊆ X, we define the distance between U1 and U2
as d(U1, U2) := inf{d(u1, u2) | u1 ∈ U1, u2 ∈ U2}.

Now it is time to peek at another marvellous topological wonder in
ultrametric spaces.

Proposition 2.2.7. Let (X, d) be an ultrametric space, c ∈ X and r ∈ R+
then the following statements are true.

1. Br(c) is open and closed.

2. For r > 0, Br(c) is open and closed.

Proof. We know that Br(c) is open (in any metric space). To see that
Br(c) is closed, we have a look at its boundary points. Thus let x be an
arbitrary boundary point, s ≤ r and a ∈ Br(c) ∩ Bs(x), thus d(c, x) ≤
max{d(c, a), d(a, x)} < max{r, s} = r, which means that x ∈ Br(c) for all
x ∈ Bδ(c).

Now we also know that Br(c) is closed (in any metric space). To see
that it is open as well, we chose s ≤ r and let x ∈ Br(c) and a ∈ Bs(x)
be arbitrarily chosen, then we get d(c, a) ≤ max{d(x, a), d(a, c)} ≤ r, thus
a ∈ Br(c), which means that Bs(x) ⊆ Br(c) as desired.

Please note that it was necessary to require r > 0 in the second case,
otherwise every one-elementary set were an open set, thus every set were
open and we were in the case of the discrete topology which isn’t too inter-
esting for us. In the first case, this isn’t a problem, as B0(c) is open and
closed by definition.

Now we know how balls behave in ultrametric spaces - and as a side
node that reminds me of a quote from an analysis professor: “One day you
will learn to appreciate balls”- but what about the spheres?

Proposition 2.2.8. In an ultrametric space (X, d) the spheres Sr(c) :=
{x ∈ X | d(x, c) = r}, c ∈ X, r ∈ R+, are open and closed.
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Proof. S := Sr(c) is closed, because Br(c) ∩ Br(c)c = S, thus as an in-
tersection of closed sets, a closed set itself. This is true for any metric
space. Now let x ∈ Sr(c) and s < r. If a ∈ Bs(x), then from the equal-
ity d(c, a) = max{d(a, x), d(x, c)} = r, it immediately follows that each
point in S possesses an open neighbourhood contained in all of S, thus S
is open.

Remark 2.2.9. In an ultrametric space (X, d), Sr(c) is no longer the
boundary of the open ball Br(c) and δBr(c) = ∅. As there are so many
sets in an ultrametric space that are both open and closed, the term clopen
was synthesised to describe those sets.

Proposition 2.2.10. Let (X, d) be an ultrametric space, B1, B2 ⊆ X open
sets, c ∈ X and r ∈ R+, then the following statements are true.

1. ∀x ∈ Br(c) : Br(c) = Br(x), that is, each point of a ball can be chosen
as centre of that ball.

2. B1 ∩ B2 6= ∅ ⇒ B1 ⊆ B2 ∨ B2 ⊆ B1, i.e. if two balls have as little as
one point in common, one is completely contained in the other.

3. B1 ∩B2 = ∅ ⇒ d(b1, b2) = d(B1, B2) ∀b1 ∈ B1, b2 ∈ B2.

4. diam(Br(c)) ≤ r.

Proof. 1. Let x ∈ Br(c) be arbitrarily chosen, then we have d(c, x) < r
and

a ∈ Br(c)⇔ d(c, a) < r

⇔ d(x, a) ≤ max{d(x, c), d(c, a)}
⇔ a ∈ Br(x).

It follows that Br(c) = Br(x). It is now easy to see that this is true
for Br(c) as well - simply replace the < with ≤.

2. Let B1, B2 be open or closed and assume that none of the assertions
B1 ∩ B2 = ∅, B1 ⊆ B2 or B2 ⊆ B1 were true. Then there exist
r, s ∈ R+ and c ∈ B1 ∩ B2, such that B1 = Br(c) and B2 = Bs(c).
Furthermore there exist x ∈ B1 \B2 and y ∈ B2 \B1. Now from all of
this we get d(y, c) > d(x, c), as x ∈ B1, but y /∈ B1, and, at the same
time, d(x, c) > d(y, c), as x /∈ B2 but y ∈ B2, which is a contradiction.

3. Again let B1, B2 be open or closed, b11, b12 ∈ B1 and b2 ∈ B2, then
d(b11, b12) < d(b11, b2) and d(b11, b12) < d(b12, b2), thus d(b11, b2) =
d(b12, b2). The desired statement now follows from a symmetry argu-
ment.
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4. This immediately follows from what we have just seen above.

We now want to have a look at p-adic valuations again, remember that
a space with a p-adic valuation is an ultrametric space.

Example 2.2.11. We consider the valuated field (Q, | |p).

1. For c ∈ Q we have B1(c) = Bp−1(c), thus B1(c) = Br(c) = Br(c) for
all r ∈ (p−1, 1). This means that the unit ball in (Q, | |p) has infinitely
many different radii and diam(B1(c)) = p−1 ≤ r.

2. As an easy exercise one can show that B1(0) = ⋃̇p−1
i (i).

From analysis we recall the following

Definition 2.2.12. Let X and Y be topological spaces and consider a map
f : X → Y , then f is called continuous at a point x ∈ X if for each
neighbourhood V of f(x) there exists a neighbourhood U of x such that
f(U) ⊆ V . The mapping is called continuous on X if f is continuous at
each point of X.

To further analyse the geometry and topology on p-adic valuations, we
need yet another

Definition 2.2.13. A topological field K, is a field K with a topology, such
that the maps (x, y) 7→ x + y, (x, y) 7→ xy and K∗ → K∗, x 7→ x−1 are
continuous.

Remark 2.2.14. A metric space (X, d) is a topological space, with the
topology being induced from the metric d.

Proposition 2.2.15. Let (K, | |) be a valuated field, then (K, d| |) is a to-
pological field.

Proof. It is not too difficult to see that the addition and multiplication maps
are continuous mappings from K × K to K, as for x0, y0 ∈ K arbitrarily
chosen, but fixed, ε > 0, δ = ε

2 and for all x ∈ Bδ(x0), y ∈ Bδ(y0) we have

d(x+ y, x0 + y0) = |x+ y − x0 − y0|
= |x− x0 + y − y0|
≤ |x− x0|+ |y − y0| < ε

and one can deal with the multiplication with a similar computation and
argument.
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To see that the map K∗ ×K∗, x 7→ x−1 is continuous, we fix x0 ∈ K∗
and chose δ < |x0|

2 , for then we have for all x ∈ Bδ(x0):

d
(1
x
,

1
x0

)
=
∣∣∣∣1x − 1

x0

∣∣∣∣
= |x0 − x|
|x| |x0|

<
2δ
|x0|2

.

Definition 2.2.16. A topological space X is called disconnected, if there
exist two disjoint, non-empty open set X1, X2 ⊆ X such that X1 ∩X2 = ∅
and X = X1 ∪ X2. If X can not be fragmented like this, X is called a
connected space. The connected component of an element x ∈ X is the
union of all sets that contain x. If the connected component of each x ∈ X
is {x}, then X is called totally disconnected.

Remark 2.2.17. Let X be a topological field. For x ∈ X the set {x} is not
open, otherwise we were back in the case of the discrete topology, which we
have outlawed for being boring.

As as open ball in an ultrametric space is clopen, we get the following

Proposition 2.2.18. In an ultrametric space (X, d) each ball Br(c), c ∈ X,
r > 0, is disconnected.

Proposition 2.2.19. An ultrametric space (X, d) is totally disconnected.

Proof. Let x ∈ X be arbitrarily chosen, with connected component Z,
and assume that there exists an y ∈ Z \ {x} with r := d(x, y) 6= 0. Let
Z1 = B r

2
(x), we know that y /∈ X1. Z1 is clopen, thus Z2 := Z \ Z1 is

open and we found a fragmentation of Z = Z1∪̇Z2. The desired result now
follows from the above proposition.

Remark 2.2.20. In ultrametric spaces there exist no connected sets with
more than one element.
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2.3 Completions of metric spaces
From a first course in analysis we know that we can complete (Q, | |∞) to
R, see for example [HS65] chapter one, section 5. In this chapter we will
have a look at the completion of arbitrary metric spaces.

Definition / Remark 2.3.1. Let (X, d) be a metric space. A sequence
(xn) is called a Cauchy-sequence if and only if

∀ε > 0 ∃N ∈ N : xm ∈ Bε(xn) ∀n,m > N.

The metric space (X, d) is called complete, if each Cauchy-sequence con-
verges in X. A closed subset Y ⊆ X is complete, if and only if Y is closed.

From the previous chapter we want to recall the notion of a continuous
mapping.

Definition / Remark 2.3.2. Let (X1, d1), (X2, d2) be two metrical spaces
and x0 ∈ X. A map f : X1 → X2 is called continuous in x0, if

∀ε > 0 ∃δ > 0∀x ∈ Bδ(x0) : f(x) ∈ Bε(f(x0)).

The map f is called uniformly continuous if

∀ε > 0∃δ > 0 ∀x, y ∈ X : x ∈ Bδ(y)⇒ f(x) ∈ Bε(f(y)).

A uniformly continuous map f is continuous and for a Cauchy-sequence
(xn), the image sequence (f(xn)) is again a Cauchy-sequence.

Proposition 2.3.3. Let (X, d) be a metric space and Y ⊆ X a dense
subset of X. Further, let (X ′ , d′) be a complete metric space and f : Y →
X
′ a uniformly continuous map, then there exists exactly one uniformly

continuous mapping f̄ : X → X
′ with f̄|Y = f .

Proof. Assume that we have two extensions of f , namely f̄1 and f̄2, then
the set X̄ := {x ∈ X | f̄1(x) = f̄2(x)} is closed. Note that Y is contained
in this set and thus, since Y is dense, X̄ = X, hence f̄1 = f̄2.

Now how to we construct f̄? Let x ∈ X be arbitrarily chosen, then
there exists a sequence (yn) ∈ Y with x = limn→∞ yn, thus (xn) is a
Cauchy-sequence in X and, as X ′ is complete, its image is a converging
Cauchy-sequence in X

′ . Now consider another sequence (zn) in Y which
converges to x as well, which implies that limn→∞ d(yn, zn) = 0, thus
limn→∞ d(f(yn), f(zn)) = 0. Now we can define f̄(x) := limn→∞ f(xn),
this uniquely defines f̄ and by construction we have f̄|Y = f as desired.
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To see that f̄ is uniformly continuous, we chose an arbitrary ε > 0,
then there exists a δ > 0 such, that for y, z ∈ Y with z ∈ Bδ(y) it follows
from the uniform continuity of f , that f(z) ∈ Bε(f(y)). By considering
Cauchy-sequences (yn) and (zn) in Y , respectively converging to x1 and x2
in X, and applying the same reasoning as above, it is easy to see that, for
large enough n, zn ∈ Bδ(yn) and thus f(zn) ∈ Bε(f(yn)). Taking this to
the limit we get f̄(x2) ∈ Bε(f̄(x1)), as desired.

Definition / Remark 2.3.4. Again consider two metric space (X1, d1),
(X2, d2) and a surjective mapping f : X1 → X2 between them. If for all
x, y ∈ X the map satisfies d1(x, y) = d2(f(x), f(y)), then we call f an
isometry and the two metric spaces are called isometric.

Isometries are injective and uniformly continuous.

Definition 2.3.5. Let (X, d) be a metric space and (X̂, d̂) a complete metric
space. If there exists a surjective map j : X → X̂ such, that im j is closed
in X̂ and for all x, y ∈ X we have d(x, y) = d̂(j(x), j(y)), then we call
(X̂, d̂, j) a completion of (X, d).

The proof of the following important theorem is given as a guided exer-
cise in [HS65] exercise 6.85.

Theorem 2.3.6. For any metric space (X, d) there exists exactly one com-
pletion, that is, if (X̂1, d̂1, j1) and (X̂2, d̂2, j2) are two completions of (X, d),
then there exists an isometry ϕ : X̂1 → X̂2 with ϕ ◦ j1 = j2.

Remark 2.3.7. If (X̂, d̂, j) is a completion of (X, d), then j is injective.
Thus we can construct a canonical completion of (X, d) with X ⊆ X̂ and
we call this canonical completion the completion of (X, d) and j : X → X̂
is then said to be the canonical immersion map.

We often write X̂ for the completion of (X, d).

Proposition 2.3.8. Let (K, | |) be a valuated field and K̂ its completion,
then
• The addition and multiplication mappings can uniquely be extended to
mappings on K̂ × K̂.
• K̂ is a topological field.
• The valuation on K can uniquely be extended to a valuation |̂ | : K̂ →
R+, inducing a topology on K̂.

Proof. As the addition mapping is uniformly continuous on K × K, the
statement follows directly from Proposition 2.3.3. The statement for the
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multiplication on K ×K follows from exercise 18 in [Sch15] (bilinear forms
on topological groups).

The fact that K̂ fulfills all the properties of a ring follows readily from
what we just said and from Proposition 2.3.3, which basically says that
we can extend identities (and inequalities) from a dense subset of X to
all of X, as long as the identities (and inequalities) are a composition of
continuous mappings. To see that the map i : K∗ → K̂, x 7→ x−1 can
be continuously extended, we use the same argumentation as in the proof
of Proposition 2.3.3, i.e. we consider a Cauchy-sequence (xn) in K̂ that
converges in K̂ \ {0}, thus |x−1

n − x−1
m | =

∣∣∣xm−xn

xmxn

∣∣∣ ≤ 1
C2 |xm − xn|, for a

constant C, which means that we can extend i to a continuous mapping on
all of K̂∗.

From ||x| − |y|| ≤ |x− y| we see that the valuation is uniformly con-
tinuous and the last statement again follows from Proposition 2.3.3 or the
principle of extending equalities and inequalities.

Definition / Remark 2.3.9. We denote with (K̂, |̂ |) the completion of
a valuated field (K, | |) and by |K| := {r ∈ R | ∃k ∈ K : |k| = r} the
value set of | |. The valuation |̂ | is non-Archimedean if and only if | | is
non-Archimedean. If the valuation is non-Archimedean, then |K| =

∣̂∣∣K̂∣∣∣.
Proof. The equivalence is clear as the maximum function is continuous.
Let x ∈ K̂ \ {0} be arbitrarily chosen. As K is dense in K̂, there ex-
ists an y ∈ K such, that ̂|x− y| < |̂x|, thus |y| = |̂y| = ̂|(y − x) + x| =
max{̂|y − x|, |̂x|} = |̂x|, which means that |̂x| ∈ |K|. The fact that K̂
fulfills the properties of a ring follows from
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2.4 The residue class field
In this section we will take a look at the connection between algebraic
properties of a field and the properties of a non-Archimedean valuation.
For a more detailed and abstract description, see [O’M99] part one, chapter
13.

Proposition 2.4.1. Let (K, | |) be a valuated field with a non-Archimedean
valuation, then the set o := o| | := B1(0) is a maximal subring of K and the
set m := m| | := B1(0) is a maximal ideal in o. Furthermore each x ∈ o \m
is invertible.

Proof. It is easy to see that 0 ∈ o and 1 ∈ o. Now let α, β ∈ o be ar-
bitrarily chosen, then, from Proposition 2.1.4 and the definition of a non-
Archimedean valuation, it immediately follows that −α, α + β and αβ are
elements of o as well.

To see that o is a maximal subring, assume that there exists a subring
o
′ , with o ⊆ o

′ , then there exists α ∈ o
′ with |α| > 1. Define r = |α|,

then the closed ball Brn(0) is a subset of o′ . Now if we let the radius go to
infinity, we see that K = ⋃

n≥1 Brn(0) = o
′ .

From |α| ≤ 1 and |β| < 1, for α ∈ o and β ∈ m, it immediately follows
that αβ ∈ m.

Now let α ∈ o \m be arbitrarily chosen. We know that |α| = 1, thus α
is invertible in o, since

∣∣∣ 1
α

∣∣∣ = 1, which means that 1
α
∈ o.

The above argument also shows that m is a maximal ideal in o, as any
other o-ideal m′ with m ⊆ m

′ contains a unit element (1 = αα−1, α ∈ m
′\m)

and is thusly equal to o.

Definition 2.4.2. Let (K, | |) be a valuated field with a non-Archimedean
valuation.

We define the integers of K w.r.t. the valuation as the elements of the
set

o = {x ∈ K | |x| ≤ 1}.
As a maximal subring of K, o is also called the valuation ring of | |.

The maximal ideal

m = {x ∈ K | |x| < 1}

is the valuation ideal of K.
The set

u = o \m = {x ∈ K | |x| = 1}
is the group of units of K w.r.t the valuation.
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Remark 2.4.3. By the strong triangle law it is easy to see that Z ⊂ o.
The reader may also show that K = Quot(o) and K = o if and only if
the valuation under consideration is the discrete valuation, which again, is
boring. Similarly, and necessarily, m = 0, if and only if we are working
with the trivial valuation.

Definition / Remark 2.4.4. A ring R with a unique maximal ideal m is
called a local ring and in that case we have m = R \R∗.

We are now ready to define the residue class field of a valuated field K.
Essentially it is the field o�m, but we want to have more flexibility than the
quotient ring permits, for later use, which leads to the following

Definition 2.4.5. Let (K, | |) be a valuated field with a non-Archimedean
valuation. A residue class field of K is a pair (K, ϕ), with a field K and a
ring homomorphism ϕ : o→ K with kerϕ = m.

Remark 2.4.6. A valuated field (K, | |), with a non-Archimedean valuation,
always has at least one residue class field, namely the above mentioned o�m
with the canonical ring homomorphism. The residue class field is unique, in
the sense that if (K1, ϕ1) and (K2, ϕ2) are two residue class fields of (K, | |),
then there exists an unique ring homomorphism ψ : K1 → K2 such that
ψ ◦ ϕ1 = ϕ2.

Example 2.4.7. In Example 2.2.11 we saw that the closed unit ball is the
disjoint union of open balls with radius 1. In algebraic terminology we can
interpret the open balls as the residue classes of m in o.

Remark 2.4.8. For a p-adic valuation, we also write op, mp and up instead
of | |p in the subscript.

We will often talk about the residue class field without mentioning the
associated homomorphism.

Proposition 2.4.9. Consider the valuated field (Q, | |p), then the sets dis-
cussed above are as follows.

1. The valuation ring is o := op = {x
y
∈ Q | p - b}.

2. The valuation ideal is m := mp = po = {x
y
∈ Q | p - b ∧ p | a}.

3. The residue class field K of (Q, | |p) is isomorphic to Fp.
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Proof. The first two statements immediately follow from the definition of
the p-adic valuation. For an element x = a

b
∈ Q we know that |x|p =

p−νp(x) and thus x is an element of o, if and only if its p-adic order νp(x) is
greater or equal than 0. As we are obviously working with the irreducible
representative of each coset, the previous condition means that p - b. With
the same argument we see that x ∈ m, if and only if νp(x) > 0, which means
that p - b ∧ p | a.

Now the only thing left to do is to find an isomorphism between K = o�m
and Fp ∼= Z�pZ. Thereunto define a map

ϕ : o→ Z�pZ
a

b
7→ (a+ pZ)(b−1 + pZ).

This mapping is well-defined, as if a
′

b′
≡ a

b
, then multiplication by the inverse

residue class of both b and b′ leads to (a′ + pZ)(b′−1 + pZ) = (a+ pZ)(b−1 +
pZ), as desired.

To see that ϕ is surjective, we arbitrarily chose (a + pZ) ∈ Z�pZ and
note that ϕ( 1

a
) = (a + pZ). Particularly we have ϕ(1) = (1 + pZ) and an

easy calculation shows that ϕ is an epimorphism.
From the equation ϕ(a

b
) = (a + pZ)(b−1 + pZ) = 0 ⇔ a ≡p 0 it follows

that kerϕ = po. The third part of the proposition now follows from the
fundamental theorem on homomorphisms.



Chapter 3

The field of rational numbers

3.1 Valuations on the field of rational
numbers

In this chapter we will answer the question how many valuations there are
on Q.

Definition 3.1.1. Two metrics on the same metric space X are called equi-
valent, if and only if they induce the same topology on X. Two valuations
are called equivalent if and only if they induce the same metrics. We use
the symbol ∼ to denote equivalence of valuations.

Lemma 3.1.2. Let | |1 and | |2 be two valuations on a field K, then the
following assertions are equivalent.
(i) | |1 ∼ | |2.
(ii) |α|1 < 1⇔ |α|2 < 1 for all α ∈ K.
(iii) ∃λ ∈ R∗+ : |α|λ1 = |α|2 for all α ∈ K.

Proof. [O’M99] 11:4.

Proposition 3.1.3. If | | is the ordinary absolute value on Q and λ ∈ R∗+,
then | |λ is a valuation on Q, if and only if λ ≤ 1 and in that case, | |λ is
again equivalent to the ordinary absolute value.

The proof of this proposition follows readily after a few easy computa-
tions, however we do want to show what happens if one choses a λ > 1.

Remark 3.1.4. Chose λ ∈ R with λ > 1, then |1 + 1|λ = |2|λ > 2 =
|1|λ + |1|λ, thus | |λ is not a valuation anymore.

18
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Proposition 3.1.5. For any non-archimedean valuation | | on Q and λ >
0, | |λ is a non-Archimedean valuation on Q.

Proof. The first two properties of a valuation are clearly satisfied and for
x, y ∈ Q we have |x+ y|λ ≤ (max{|x| , |y|})λ = max{|x|λ , |y|λ}. The equi-
valence of the two valuations follows from Lemma 3.1.2.

Remark 3.1.6. If | | ∼ δQ, then | | = δQ, as ∀λ > 0 : δλQ(x) = 1λ = 1, for
all x ∈ Q and δλQ(0) = 0λ = 0. In other words, the discrete valuation is
equivalent to itself and itself alone.

Proposition 3.1.7. For two distinct primes p and q, the p-adic and q-adic
valuations are not equivalent.

Proof. Consider the sequence (xn)n≥1 =
((

p
q

)n)
n≥1

. With Lemma 3.1.2 it
then follows that limn→∞ |xn|p = 0, but limn→∞ |xn|q =∞.

Remark 3.1.8. If two valuations are equivalent, they are either both
Archimedean or both non-Archimedean.

Definition / Remark 3.1.9. From now on we denote the ordinary abso-
lute value on Q with | |∞.

We will soon give a brief explanation as to why we chose to make the
above definition, but first we will finally have a look at one of the most
important theorems in the field of p-adic numbers.

Theorem 3.1.10 (Theorem of Ostrovskij). Every non-trivial valuation on
Q is equivalent to | |∞ or | |p, for a p ∈ P.

Proof. It is clear that a p-adic valuation is not equivalent to | |∞, since the
former is non-Archimedean and the latter is Archimedean, see Remark 3.1.8.
That, for two distinct primes p and q, the p-adic and q-adic valuations are
not equivalent was stated and proven in Proposition 3.1.7. For further
details and a complete proof see [O’M99] 31:1.

Now that we know all the possible valuations on Q we want to see how
they are connected.

Proposition 3.1.11. Let x ∈ Q \ {0} be arbitrarily chosen, then

|x|∞ ·
∏
p∈P
|x|p = 1

.
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Proof. W.l.o.g. we can assume that x ∈ N, else we use the first two prop-
erties of valuations. Now we can write x = ∏r

i=1 p
ki
i and we see that

• |x|q = 1, for q 6= pi, 1 ≤ i ≤ r,
• |x|pi

= p−ki
i , for 1 ≤ i ≤ r and

• |x|∞ = ∏r
i=1 p

ki
i .

Corollary 3.1.12. For any number n ∈ N we have |n|p ≥ 1
n
.

Proof. It is clear that |n|∞ = n and we again write n = ∏r
i=1 p

ki
i , then it

follows that |n|q = 1, if q 6= pi, for all 1 ≤ i ≤ r, and |n|pi
= p−ki

i =∏i−1
j=1 p

kj
j ·
∏r

j=i+1 p
kj
j

n
≥ 1

n
else, as desired.

Remark 3.1.13. This product formula is a, rather simple, example as to
why looking at all the valuations of Q at the same time can lead to interesting
results. For example, knowing all the values w.r.t. to all the norms, but one,
we can easily recover the missing value - this is a very important concept
in number theory. We will come back to this topic in a later chapter, when
we briefly talk about the Hasse-Minkowski principle.

Furthermore, to emphasize the close relation of all those valuations,
mathematicians introduced the idea of attaching a prime number to the ab-
solute value, the so called prime at infinity. Thus, for example, we could
write the above product formula as ∏p∈P∪{∞} = 1. Note that not all math-
ematicians adhere to that convention.
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3.2 The incompleteness of the field of
rational numbers

It is well known that (Q, | |∞) is not complete, see Example 3.2.3. Now,
after Ostrovskij told us the secret about all the different valuations on Q,
we want to answer the obvious question whether the (Q, | |p) are complete
or not.

Lemma 3.2.1. A sequence (xn) in Q is a Cauchy-sequence w.r.t | |p =: | |,
if and only if

lim
n→∞

|xn+1 − xn| = 0.

Proof. If (xn) is a Cauchy-sequence, then with m = n + 1 the desired
follows immediately. Conversely, w.l.o.g. let m > n. As the valuation is
non-Archimedean, we have

|xm − xn| = |xm − xm−1 + xm−1 − xm−2 + . . .+ xn|
≤ max{|xm − xm−1| , |xm−1 − xm−2| . . . |xn−1 − xn|}.

Note that in the above lemma the necessary condition is true for any
valuation, but it is not sufficient for Archimedean valuations, as shows the
next

Example 3.2.2. Consider the sequence xn = ∑n
i=1

1
n
, then |xn+1 − xn|∞ =

1
n+1 and thus limn→∞ |xn+1 − xn|∞ = 0, but the sequence can’t be a Cauchy-
sequence since it doesn’t even converge.

The next example will be a crucial role in what is yet to come.

Example 3.2.3. There exists a Cauchy-sequence (xn)n≥1 in Q such, that
|x2
n − 2|∞ < 10−n, but lim xn =

√
2 /∈ Q.

We are now ready to answer the above question.

Theorem 3.2.4. For all p ∈ P ∪ {∞}, the valuated field (Q, | |p) is not
complete.

Proof. This requires a rather lengthy computation, thus for now we will
just sketch the idea of the proof. The idea is to find a Cauchy-sequence in
Q with a limit not in Q. Now chose a ∈ Q such, that a is not a square,
p - a and a is a square modulo p (this is possible, since there are 1

2(p − 1)
quadratic residues smaller than p, but only √p squares).
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To construct the desired Cauchy-sequence, we chose a solution x0 of
x2 ≡p a and extend it, that is, we want x1 to fulfill x1 ≡p x0 and x2

1 ≡p2 a
and we further chose xn such, that xn ≡pn xn−1 and x2

n ≡pn+1 a.
To show that such a sequence exists, corresponds to show the existence

of solutions of f(x) ≡pn= 0, where f is a polynomial in Z[X], which can be
done by induction, but is rather tedious and we will come back to similar
questions in a later section on Hensels lemmas.

Using Lemma 3.2.1, we immediately see that the constructed sequence
is really a Cauchy-sequence in Q (without a limit in Q).

Remark 3.2.5. (Q, δQ) is complete. Since the only possible values are 0
and 1, a sequence (xn) is a Cauchy-sequence w.r.t. δQ, if and only if there
exists a natural number N ∈ N such, that ∀n,m > N : δQ(xm − xn) = 0,
from which it immediately follows that xm = xn. Thus the sequence will
eventually become constant, thus convergent, yet, as said before, this case
is boring.

Exercise 3.2.6. Only considering prime numbers up to 100, we see that
X2 ≡pn 2, n ∈ N, has no solutions for p = 3, 5, 11, 13, 29, 37, 43, 47, 53, 59,
61, 67, 83, one solution for p = 2 and in all other cases, that is, for p =
7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, there are two solutions.

Work out the details of the above construction for a suitable prime of
your choice.



Chapter 4

The field of p-adic numbers

In this chapter we will finally introduce the field of p-adic numbers.

4.1 p-adic numbers and integers
We have seen that every metric space possesses a completion w.r.t. its
metric, c.f. Theorem 2.3.6, so what exactly does (Q̂, |̂ |p) look like?

Definition 4.1.1. Let p ∈ P be an arbitrary chosen prime number. The
completion of (Q, | |p) is called the field of p-adic numbers and denoted by
Qp.

Remark 4.1.2. Using results from the previous two chapters we immedi-
ately see that
• Q is dense in Qp,
• | |p can be uniquely extended to a non-Archimedean valuation on Qp,
we will denote the extension again by | |p and
• |Qp|p = |Q|p = {pn | n ∈ Z} ∪ {0}, i.e. ∀x ∈ Qp ∃n ∈ Z such, that
|x|p = p−n.

Definition 4.1.3. A p-adic integer is an element of the ring

Zp := op = {x ∈ Qp | |x|p ≤ 1}.

Remark 4.1.4. As for all z ∈ Z we have |z|p ≤ 1, it is clear that Z ⊆ Zp.

Proposition 4.1.5. Let a ∈ Zp be arbitrary chosen, then there exists a
unique sequence (ai) of integers (representing a) such, that for all i ≥ 0 the
sequence fulfills 0 ≤ ai < pi+1 and ai ≡pi+1 ai+1. This sequence converges
to a, w.r.t. | |p and it immediately follows that Z is dense in Zp.

23
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Proof. As Q lies dense in Qp, there exists a sequence
(
an

bn

)
n≥0
∈ Q with

gcd(an, bn) = 1 for all n such, that a = limn→∞
(
an

bn

)
. Now if we chose n

large enough, p is not a divisor of bn, else, since gcd(an, bn) = 1 and p - an,
we had |an|p

|bn|p
= 1
|bn|p
≥ p > 1, which is a contradiction to x ∈ Zp. Thus there

exists un ∈ Z with bnun ≡pn 1 and because |bn|p = 1 and |an|p ≤ 1, we get
the following equation:

|a− anun|p = |bn|p |a− anun|p
= |bna− bnanun|p
≤ |bna− an|p + |an − bnanun|p
= |bn|p

∣∣∣∣a− an
bn

∣∣∣∣
p

+ |an|p |1− bnun|p

≤
∣∣∣∣a− an

bn

∣∣∣∣
p

+ p−n.

From this equation we immediately see that Z is dense in Zp. Thus there
exists an integer z0 ∈ Z with z0 ∈ Bp−1(a) and a0 can be chosen in such a
way, that a0 ≡p z0, which means that a0 ∈ Bp−1(a). The rest of the proof is
done by induction on the length of the sequence, thus assume that a0, . . . , as
have already been constructed, which means that a−as

ps+1 ∈ Zp and thus the
existence of an integer z ∈ Bp−1(a−as

ps+1 ) in ensured. By defining as+1 :=
as + zps+1 we get as+1 ≡ps+1 as and 0 ≤ as+1 < ps+1 + (p− 1)ps+1 ≤ p−s−2,
as desired, as by this construction we have ai ∈ Bp−i−1(a), for all i, and
thus the constructed sequence converges to a w.r.t. the p-adic valuation.

To see that this sequence is unique, we simply chose a second sequence
(bi) with the same properties. Now assuming that j is the smalled index
such, that aj 6= bj, we notice that aj ≡pj+1 aj−1 = bj−1 ≡pj+1 bj, with
0 ≤ aj, bj ≤ pj+1, which means that aj = bj after all.

Remark 4.1.6. Zp is, as a closed subset of a complete space, complete.
As the valuation on Q can be uniquely extended to a valuation on Qp, for
x, y ∈ Z we obviously get that |x− y|p takes the same value in Z as it would
in Zp, thus, in the light of chapter 2, section 3, we can consider Zp as the
completion of Z w.r.t. | |p.

Proposition 4.1.7. Each a ∈ Zp can be uniquely written in the form

a =
∞∑
i=0

aip
i,

with 0 ≤ ai ≤ p− 1.
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Proof. To see that the series converges to a, we notice that the partial sums
correspond to the ai in the sequence of the previous theorem.

We can generalize this idea to the p-adic numbers as follows: let x ∈ Qp,
x /∈ o(p), then |x|p = pm, m ∈ N. Now a multiplication of x by pm yields
x
′ := xpm, x′ ∈ u(p) and

x = 1
pm

∞∑
i=0

x
′

ip
i

=
∞∑

i=−m
xip

i,

which leads to the following

Theorem 4.1.8. Each element x ∈ Qp can be written as

x =
∞∑

i=−m
xip

i,

where x−m 6= 0 and xi ∈ {0, 1, . . . , p − 1}. This representation is unique
and called the p-adic representation of x.

Now the natural question to ask is how exactly are p-adic valuations
and the p-adic representation of rational numbers connected?

Proposition 4.1.9. Let x := ∑∞
i=0 xip

i, xi = 0 for 0 ≤ i ≤ k, k ∈ N and
xk 6= 0, then |x|p = p−k. For x := ∑∞

i=−m xip
i, x−m 6= 0, we have |x|p = pm.

Proof. The partial sums an of the series ∑∞i=0 xip
i converge to x, thus, in

the first case, we get

|x|p = |x− an + an|p

≤ max


∣∣∣∣∣
n∑
i=k

xip
i

∣∣∣∣∣
p

,

∣∣∣∣∣∣
∞∑

i=n+1
xip

i

∣∣∣∣∣∣
p


≤ max{p−k, p−n−1},

from which it immediately follows that |x|p = p−k for all n ≥ k.
The proof of the second case is similar.

Remark 4.1.10. What we just said is that it is easy to compute the dis-
tance between two p-adic integers a, b if their p-adic expansion is known, as
clearly, if their first n digits are equal, then pn divides a− b, that is, in that
case, b ∈ Bp−n(a).
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Due to the previous propositions we can extend our definition of the
order of an element to all of Qp, namely νp(x) = ordp(x) = k, or νp(x) =
ordp(x) = −m.

Corollary 4.1.11. The p-adic units are Z∗p := up = {a ∈ Zp | |a|p = 1}.
Using the unique p-adic representation, this set can be written as

{a =
∞∑
i=0

aip
i | x0 6= 0}.

Corollary 4.1.12. For x ∈ Zp with |x|p = p−n, n ∈ Z, there exists a unit
ε ∈ up such, that x = ε · pn.

Example 4.1.13. −1 ∈ Qp: 0 = 1+∑∞i=0 p
i(p−1), thus −1 = ∑∞

i=0 p
i(p−1)

and νp(p) = 1, which means that the series actually converges. There is no
notion of negative numbers in Qp.

Example 4.1.14. x = 90
109 = 21 · 32 · 51 · 23−1 · 83−1, thus |x|2 = 1

2 , |x|3 = 1
9 ,

|x|5 = 1
5 , |x|2 3 = 23, |x|8 3 = 83 and |x|p = 1 for all other p ∈ P.

Example 4.1.15. 51− 3 = 48 = 24 · 31, thus d2(3, 51) = 1
16 , d3(3, 51) = 1

3
and dp(3, 51) = 1 for all other p ∈ P.

Example 4.1.16. In Q5 the sequence (1, 5, 52, 53, . . .) is a zero sequence
and the sequence (1, 1

2 ,
1
22 ,

1
23 , . . .) is bounded, but not a Cauchy-sequence,

since d5( 1
2n ,

1
2n+1 ) =

∣∣∣ 1
2n+1

∣∣∣
5

= 1.

Remark 4.1.17. The unique p-adic representation yields a bijection(Z�pZ)N → Z

(. . . , a2, a1, a0) 7→
∞∑
i=0

aip
i,

thus the cardinality of Zp equals the cardinality of the continuum, i.e. #Zp =
p#N = 2ℵ0.
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4.2 Algebraic and topological properties
We recall the definitions of the valuation ring

o = {x ∈ K | ν(x) ≥ 0} = {x ∈ K | |x| ≤ 1},

the units
u = {x ∈ K | ν(x) = 0} = {x ∈ K | |x| = 1}

and the corresponding maximal ideal

m = {x ∈ K | ν(x) > 0} = {x ∈ K | |x| < 1}.

We have seen that Zp := B1(0) ∼= op, i.e. the open unit ball in Qp is the
valuation ring. This ring op is a local ring with maximal ideal m = Zp\Z∗p =
{x ∈ Zp | |x|p < 1} = {x ∈ Zp | x0 = 0} = {x = p

∑∞
i=0 xi+1p

i} = pZp.

Remark 4.2.1. The map ϕp : Zp → Z, a = ∑∞
i=0 aip

i 7→ a0, defines an
epimorphism from Zp to Fp = Z�pZ and is called the reduction map modulo
p. Furthermore the kernel of ϕp is kerϕp = {x ∈ Zp | x0 = 0} = pZp, thus,
from the fundamental theorem of homomorphisms, we see that

Zp�pZp
∼= Fp = Z�pZ.

Remark 4.2.2. For the valuation ring, units and maximal ideal, we have
the following set equalities:
• Zp ∩Q = {a

b
∈ Q | p - b} = op,

• pZp ∩Q = {a
b
∈ Q | p - b ∧ p | a} = mp and

• Z∗p ∩Q = Zp�pZp ∩Q = {a
b
∈ Q | p - ab} = up = op�mp

.

Proposition 4.2.3. The valuation ring op = Zp is a principal ideal domain,
with the principal ideals {0} and pnZp for all n ∈ N.

Proof. As Zp ⊆ Qp, it is an integral domain.
Now let a 6= {0} be an ideal in op and consider an element a ∈ a \ {0}

of maximal absolute value. Such an element can be found, since the value
set is discrete. Furthermore let n be the p-adic order of a, then a = ε · pn,
for a unit ε ∈ up, thus pn = ε−1 · a ∈ a, which means that (pn) = pnop ⊂ a.

Conversely, for each a ∈ a we have |a|p = p−m ≤ p−n, thus a = εpm =
εpnpm−n ∈ pnop, therefore a ⊆ pnop.

Remark 4.2.4. As op = Zp is an integral domain, Qp can be considered as
its quotient field Quot(Zp) and Qp = Zp[p−1]. For a ∈ Zp \ {0}, a = εpn,
for a unit ε ∈ up, it is easy to see that a−1 ∈ p−nZp.
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We have seen that we can write each x ∈ Qp as x = pmx
′ , with m ∈ Z

and x′ ∈ Zp. What does this mean in a more topological language?

Proposition 4.2.5. The balls pnZp, for all n ∈ Z, constitute a neighbour-
hood basis of 0, which covers all of Qp.

Proof. B1(0) = Zp ⊆ Qp is clopen, thus it is an open neighbourhood of 0.
The map Qp → Qp, x 7→ px is a homeomorphism, thus pnZp is an open
neighbourhood of 0. Now from the p-adic representation it follows that
Qp = ⋃

n∈Z p
nZp and those pnZp actually are a neighbourhood basis for 0,

as for any arbitrary open set U around 0, there exists a n0 ∈ Z such, that
Bp−n0 (0) ⊆ U .

Remark 4.2.6. Once again we have a strong connection between the topo-
logical and algebraic properties of p-adic numbers, as for an element x ∈ Qp

we can consider νp(x) as the largest number, such that x ∈ pνp(x)Zp.

Example 4.2.7. Consider x = x−5p
−5 +x−4p

−4 + . . .+x−1p
−1 +x0 +x1p+

x2p
2 + . . ., x−5 6= 0, then it is clear that x ∈ p−5Zp, but x /∈ p−4Zp, as from

x = p−4(x−5p
−1 + x−4 + x−3p+ . . .+ x0p

4 + x1p
5 + . . .) = p−2x

′ we see that
x
′
/∈ Zp and thus νp(x) = −5.

Remark 4.2.8. For n ∈ N and x, y ∈ Qp we have

y ∈ Bp−n(x)⇔ x− y ∈ pnZp

and we write x ≡pn y, or even shorter x ≡n y.

Definition 4.2.9. A Hausdorff1 space is a topological space in which each
pair of distinct points of X have disjoint neighbourhoods.

Proposition 4.2.10. Every metric space (X, d) is a Hausdorff space.

Proof. We have to show that the topology induced by the metric d is Haus-
dorff. Let x, y ∈ X be two distinct points, that is, d(x, y) 6= 0 and consider
the open balls Bx := B d(x,y)

2
(x) and By := B d(x,y)

2
(y). Those are obviously

open sets in X and to see that they are disjoint, we assume there exists
a z ∈ Bx ∩ By, but that means that d(x, z) < d(x,y)

2 and d(y, z) < d(x,y)
2 ,

thus d(x, z) + d(z, y) < d(x, y), which is a contradiction to the triangle
inequality.

1Felix Hausdorff (* 1868; Breslau, today Wrocław, capital of the Lower Silesian
Voivodeship in Poland; † 1942 Bonn), one of the founders of the theory of topology,
was a German mathematician and a philosopher under the pseudonym Paul Mongré.
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Example 4.2.11. The converse of the above remark is not true, for example
consider the set of all ordinal numbers with the discrete order topology.

The following well known proposition and its corollary seem inconspicu-
ous, but they play an important role in what is yet to come, as well as in
[Sch15].

Proposition 4.2.12. Let X be a Hausdorff space. Suppose that Y ⊆ X
and that a is a limit point of A. Then each neighbourhood of a contains
infinitely many points of A.

Corollary 4.2.13. In a Hausdorff space the limit of a sequence is uniquely
defined. This astonishing fact is not true for general topological spaces.

Proposition 4.2.14. The p-adic field Qp is a totally disconnected Haus-
dorff space.

Proof. As a metric space Qp is a Hausdorff space (Proposition 4.2.10) and
since its metric is an ultrametric, Qp is totally disconnected, as seen in
Proposition 2.2.19.

Definition 4.2.15. A metric space (X, d) is called compact, if and only if
for each open cover of X there exists a finite subcover of X. The metric
space is called locally compact, if and only if every x ∈ X has a compact
neighbourhood.

Proposition 4.2.16. The set of all the the balls in Qp is countable.

Proof. For any arbitrary ball Br(x) with radius r, we know that there exists
an integer z ∈ Z, such that r = p−z. With Proposition 4.1.8 we can write
x = ∑∞

i=−m xip
i. Now if we take the z-th partial sum z0 of this series, we

easily see that z0 ∈ Bp−z (a) and this, together with the fact that the set of
possible radii is countable, see Example 2.2.11, proves the proposition.

Proposition 4.2.17. The field Qp is locally compact with compact valu-
ation ring Zp.

Proof. Using the uniqueness of the p-adic expansion (Proposition 4.1.7)
and the pigeonhole principle, we can construct a sequence of subsequences,
proving that Zp is sequentially compact, thus as a metric space, compact,
see for example [HS65] theorem 6.37. Let (an) be a sequence in Zp and for
each n write an = ∑∞

i=0 a
(n)
i pi, then, by the pigeonhole principle, we can find

an element b0 ∈ {0, . . . , p − 1}, with a(n)
0 = b0, for infinitely many n. This

yields a subsequence of (an), namely (ab0n), whose terms all have b0 as first
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digit in their p-adic expansion. Repeating this construction inductively we
obtain the desired sequence of subsequences of (an), ((abkn)n)k with (abkn)n
being a subsequence of (abk+1n)n, as well as a p-adic integer b = ∑∞

i=0 bkp
k

such, that every term of (abkn)n has the same k + 1-first digits as b. It
is then clear that the sequence of the diagonals (abkk) is a subsequence of
(an) which converges to b, which proves that Z is sequentially compact, as
desired.

As Zp = op = B1(0) = Bp(0), it is evident that every ball in Qp is
compact, thus Qp is locally compact.
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4.3 Visualization of p-adic numbers
Our visual perception, whether due to high exposure from a young age or
simply because of the biological properties of our brain I do not know, is
based on standard Euclidean geometry. I doubt the physical universe is
Euclidean in its geometry, but it is very clear that humankind relies on
Euclidean geometry to perceive the universe. So strong is this reliance that
even in the setting of p-adic topology, which clearly is not Euclidean, we
have found a way to picture it using Euclidean geometry - as a matter of fact,
we even used a language borrowed from Euclidean geometry and topology,
such as balls and spheres, to talk about p-adic topology. However, the
landscape created by p-adic topology is completely different to our intuition,
thus, for example, as we have already seen, the notions of open and closed
balls becomes meaningless.

The goal of this section is to visualize the p-adic integers within our
familiar framework of Euclidean geometry.

It is interesting to note that the topology on Zp is inherently fractal, that
is, Zp is homeomorphic to the Cantor set and Qp is homeomorphic to a finite
disjoint union of Cantor sets. Consider the open set C0 := [0, 1] and delete
the middle third, obtaining the compact set C1 = [0, 1

3 ]∪ [2
3 , 1]. Iterating on

this construction we get a decreasing sequence of nested compact subspaces
of the unit interval C0, where each Cn consists of 2n closed intervals of
length 3−n.

Definition 4.3.1. A topological space that is homeomorphic to a complete
metric space with a countable dense subset is called a Polish space, that is,
a Polish space is a separable, completely metrizable topological space. The
spaces are named in honour of Polish topologists - Sierpiński2, Kuratowski3
and Tarski4 who, among others, extensively studied them first.

Remark 4.3.2. Note that Polish spaces are not necessarily metric spaces,
they admit many different complete metrics which then induce the same
topology. A polish space with an unique metric is called a Polish metric
space.

Example 4.3.3. Rn,Cn, [0, 1], Znp and Qn
p are Polish spaces.

2Wacław Franciszek Sierpiński (* 1882 Warsaw; † 1969 ibidem)
3Kazimierz Kuratowski (* 1896 Warsaw; † 1980 ibidem)
4Alfred Tarski Tajtelbaum (* 1901 Warsaw; † 1983 Berkeley, USA)
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Definition / Remark 4.3.4. Let CA := ⋃
i∈Z(2i, 2i + 1) and for n ∈ N

inductively define Cn = Cn−1 ∩ (3−nCA), then the set C := ⋂∞
i=0 Ci, the so

called Cantor5 set, is uncountably infinite and compact.

Now consider the 3-adic expansion of a natural number x = ∑∞
i=0 xi3i,

then the construction of C1 corresponds to removing those x ∈ C0 with
x0 = 1, the construction of C2 corresponds to removing those x with x1 = 1
and so on. In iteration we see that the Cantor set C consists of elements
that admit a 3-adic expansion of the form: ∑∞i=1 αi3−i, with αi ∈ {0, 2}.
This doubling of the binary representation leads to the following

Remark 4.3.5. The Cantor set is homeomorphic to the Cantor space
(C, | |) with the discrete topology. The Cantor space is a perfect, totally dis-
connected, uncountably infinite, compact Polish space. The actual homeo-
morphism is given by the above construction using the ternary numeral sys-
tem.

Proposition 4.3.6. The sets (Z2, | |2) and (C, | |) are homeomorphic. A
homeomorphism is given by ϕ : Z2 → C, ∑∞i=0 xi2i 7→

∑∞
i=0(2xi)3−(i+1).

Proof. This proof is rather straightforward and left to the astute reader.

The case of an odd prime number is analog to the even case, we just
need a more general

Definition 4.3.7. Let p ∈ P be arbitrarily chosen, CA = ⋃
i∈Z[2i, 2i + 1]

and Cp
0 := [0, 1]. We define, by induction, Cp

n := Cp
n−1∩ ((2p−1)−nCA) and

the p-Cantor set Cp is then defined as Cp := ⋂∞
i=0 C

p
i .

Remark 4.3.8. For a fixed n ∈ N, the set Cp
n consists of 2p−1

2
n disjoint open

sets of length each (2p−1)−n. The p-Cantor set is obtained by dividing those
disjoint sets into 2p− 1 subintervals of equal length and then deleting every
second open interval.

Proposition 4.3.9. The p-Cantor set is compact and uncountably infinity.

If we once again consider the (2p−1)-adic expansion of a natural number
x, then, completely analog to the even case, we see that x ∈ Cp if and only
if in its (2p−1)-adic expansion, each xn is even, which leads to the following

5Georg Ferdinand Ludwig Philipp Cantor (* 1845 Saint Petersburg, Russian Federa-
tion; † 1918 Halle an der Saale, Germany) was a German mathematician.
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Remark 4.3.10. The Cantor sets Cp are homeomorphic to the Cantor
spaces (Cp, | |) with the discrete topology. The Cantor spaces are perfect,
totally disconnected, uncountably infinite, compact Polish spaces. The ac-
tual homeomorphisms are given by the above construction using the (2p−1)-
ary numeral system.

Theorem 4.3.11. There is a homeomorphism between the metric spaces
(Zp, | |p) and (C, | |), given by

ϕ : Zp → Cp

x =
∞∑
i=0

xip
i 7→

∞∑
i=0

(2xi)(2p− 1)−(i+1).

Definition 4.3.12. A closed metric space (X, d) is called perfect if it has
no isolated points, that is, if it is equal to the set of its own limit points.

From [Bro10] we cite the following

Proposition 4.3.13. Every uncountable Polish space contains a subset that
is homeomorphic to C. In particular, every totally disconnected, perfect
and compact metric space is homeomorphic to the Cantor set. A complete
topological characterization of Cantor spaces is given by Brouwer6 in the
following sense: any two compact Hausdorff spaces with countable clopen
bases are homeomorphic.

Summarizing the above discussion, we obtain the following, rather sur-
prising

Proposition 4.3.14. The p-adic fields Z2 and Zp are homeomorphic for
all p ∈ P.

Example 4.3.15. The 3-adic field Z3 is homeomorphic to the Sierpinsky
triangle. See Figure 4.1.

Although this might seem rather strange at first, it has important ap-
plications in high-energy physics and quantum mechanics, see [Vol10] for
more information on this very recent development in the field of quantum
mechanics.

6Luitzen Egbertus Jan Brouwer (* 1881 Overschie (Rotterdam); † 1966 Blaricum)
was a Dutch mathematician.
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Figure 4.1: The Sierpinsky triangle

4.4 Calculating with p-adic numbers
The addition in Qp is very straightforward:

Proposition 4.4.1. For x, y ∈ Qp, x = ∑∞
i=−m xip

i, y = ∑∞
i=−n yip

i and
w.l.o.g. m ≥ n we have

x± y =
∞∑

i=−m
(xi ± yi)pi,

where yi = 0, for all i ∈ {−m, . . . ,−n− 1}.

Example 4.4.2. Take x = 1 ∈ Qp, then y = ∑∞
i=0(p−1)pn solves x+y = 0.

Proposition 4.4.3. For x = ∑∞
i=−m xip

i and y = ∑∞
i=−n yip

i elements in
Qp we define

xy :=
∞∑

i=−m−n
zip

i,

where z−m−n = x−my−n, z−m−n+1 = x−my−n + x−my−n+1 and z−m−n−j =∑j
i=0 x−m+j−iy−n+i (compare this with the well known Cauchy product for

sequences).

Exercise 4.4.4. Show that p ∈ Zp has no multiplicative inverse in Zp.
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Exercise 4.4.5. Write a = . . . a2a1a0 ∈ Zp, then show that a admits a
multiplicative inverse in Zp if and only if a0 6= 0.

This is obviously completely different from the situation we are used to
in Z, nevertheless Zp is still not a field.

Remark 4.4.6. PARI / GP7 by H. Cohen8, a computer algebra system with
the main aim of facilitating number theory computations, has an inbuild
support for p-adic numbers. One can create a p-adic number by simply
typing: x = x+O(pk), where k is the desired precision.

PARI Example 1 p-adic numbers in PARI - additive inverse
PARI Input: ? x=15 * 17ˆ-3 + 9 * 17ˆ-1 + 5 + 6*17 + 12*17ˆ2 + 3*17ˆ3

+ 17ˆ4 + O(17ˆ20)
%1 = 15*17ˆ-3 + 9*17ˆ-1 + 5 + 6*17 + 12*17ˆ2 + 3*17ˆ3 + 17ˆ4 +
O(17ˆ20)
? -x

PARI Output: %2 = 2*17ˆ-3 + 16*17ˆ-2 + 7*17ˆ-1 + 11 + 10*17 +
4*17ˆ2 + 13*17ˆ3 + 15*17ˆ4 + 16*17ˆ5 + 16*17ˆ6 + 16*17ˆ7 +
16*17ˆ8 + 16*17ˆ9 + 16*17ˆ10 + 16*17ˆ11 + 16*17ˆ12 + 16*17ˆ13 +
16*17ˆ14 + 16*17ˆ15 + 16*17ˆ16 + 16*17ˆ17 + 16*17ˆ18 + 16*17ˆ19
+ O(17ˆ20)

Example 4.4.7. Consider x = 9
670183865 ∈ Q13, using PARI we see that

|x|13 =
∣∣∣13−5 · 9

1008

∣∣∣
13

= 135, thus x /∈ Z13, but x
′ = x · 135 = 9

1008 ∈ Z13.

Proposition 4.4.8. A p-adic number x ∈ Qp has a finite p-adic represent-
ation, if and only if x = z

pn , for z ∈ Z, n ∈ N and p ∈ P.

Proof. Write

x =
n∑

i=−m
xip

i = p−m
n∑

i=−m
xip
−m+i = z

pm
, z ∈ Z,

as desired.
Conversely, if x = p−my, y ∈ N, then we can write y in the basis p and

get y =
m∑
i=0

yip
i, as desired.

In analog to decimal fraction decomposition, we have the following
7http://pari.math.u-bordeaux.fr/
8French mathematician at the University of Bordeaux (* 1947).
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Proposition 4.4.9. Consider an arbitrary p-adic number x =
∞∑

i=−m
∈ Qp,

then x ∈ Q, if and only if there exist N, k ∈ N such, that xn+k = xn, for all
n > N , that is, if x becomes periodic.

Proof. This proof is rather technical, but a complete proof can be found in
[Kat].
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4.5 An algebraic construction of the p-adic
numbers

In this section we will present an algebraic construction of the field of p-adic
numbers, based on [Ser70].

Definition 4.5.1. A projective system is a sequence (Xn, ϕn) of sets and
so called transition maps ϕn : Xn → Xn−1. The projective limit of this
sequence is a set X with maps ψn : X → Xn such, that ψn = ϕn ◦ψn+1 and
satisfying the following condition: for each set Y and maps fn : Y → Xn

with fn = ϕn ◦ fn+1, there is a unique factorization f of the fn through the
set X, that is fn = ψn ◦ f : Y → X → Xn.

Remark 4.5.2. A projective system can be represented by a diagram:

. . .
ϕn+1−−−→ Xn

ϕn−→ Xn−1
ϕ1−→ . . . X1

ϕ0−→ X0.

Proposition 4.5.3. For every projective system (Xn, ϕn) there exists a
unique projective limit lim←−Xn := (X,ψn) ⊆ ∏∞n Xn.

Proof. To see that a limit actually exists, consider the set

X := {(xn) | ϕn(xn+1) = xn ∀n ≥ 0} ⊆
∞∏
n=0

Xn.

Then, by definition, for each x ∈ X we have ϕn(πn+1(x)) = πn(x), where
the πn : Xn → Xn are the canonical projection maps. Thus the restrictions
ψn of those projections to X fulfill ϕn ◦ ψn+1 = ψn and it is clear that
(X,ψn) is an upper bound for the given sequence.

Now we still have to prove that (X,ψn) has the required universal prop-
erty. To see this, consider another tuple (X ′ , ψ′n) satisfying the desired
condition. We have to show that there is a unique factorization of ψ′n by
ψn, alas by the universal property of the product of sets and the projection
maps, we know that there exists a unique map g : X ′ → ∏∞

n=0 Xn such,
that the following diagram

∞∏
n=0

Xn

X
′ ψ

′
n -

g
-

Xn

πn

?



CHAPTER 4. THE FIELD OF P-ADIC NUMBERS 38

commutes. Chosing g = (ψ′n) finishes the proof, as then im g ⊆ X and we
can define the factoring function f , as in the definition, by restricting the
codomain of g, that is, f : X ′ → X, x 7→ g(x).

The uniqueness follows again from the universal property.

Note that a projective limit neet not to be of the same kind as the sets
(or groups, or rings or spaces) of the projective sequence. For example, in
general, the projective limit of a sequence of fields is usually only a ring.
Another example is that the projective limit of finite abelian groups need
not to be finite. However in certain situations we can still save a lot of
information from our spaces.

Proposition 4.5.4. For a projective system (Xn, ϕn) of topological spaces
and continuous maps, the projective limit is closed in ∏∞

i=0 Xn, if the Xn

are Hausdorff spaces.

Proof. This follows immediately from the Hausdorff property, i.e. we can
find disjoint open neighbourhoods of xi and ϕ(xi+1), thus it is easy to see
that ∏∞i=0 Xi \X is open.

Now we return to the actual matter at hand, the construction of p-
adic numbers. There is a natural, or canonical, surjective homomorphism
ϕn : Z�pnZ→ Z�pn−1Z with kerϕ = pn−1Z and the sequence

. . .
ϕn+1−−−→ Z�pnZ

ϕn−→ Z�pn−1Z
ϕn−2−−−→ . . .

ϕ3−→ Z�p2Z
ϕ2−→ Z�pZ,

forms a projective system.

Definition 4.5.5. The ring of p-adic integers Zp is defined as the projective
limit of the above system.

Thus by definition, an element of Zp = lim←−(Z�pnZ, ϕn) is a sequence
a = (. . . , an, . . . , a1), with:

an ∈ Z�pnZ and ϕn(an) = an−1 if n ≥ 2.

The Z�pnZ, with the discrete topology, are compact topological spaces, thus
by Tikhonov9, their cartesian product is compact as well (in the product
topology), see [HS65] 6.43 for a proof of Tikhonov’s theorem. Thus, as a
closed subspace of a compact space, Zp is a totally disconnected compact
space.

9Andrey Nikolayevich Tikhonov (* 1906 Gzhatsk (Russian Empire) today Gagarin
(Russia); † 1993 Moscow) was a Russian mathematician.
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For an element a ∈ Zp, we define the reduction modulo pn, for n ∈ N,
by εn : Zp → Z�pnZ, a 7→ an and we then get a commutative diagram:

Z�pn+1Z

Zp
εn -

ε n
+1

-

Z�pnZ

ϕ
n

-

In English: Zp is closer to Z�pnZ than it is to Z�pn+1Z.
Since Zp is an integral domain (Proposition 4.2.3), the following defini-

tion makes sense.

Definition 4.5.6. The field of p-adic numbers Q̃p is the field of fractions
of Zp.

Proposition 4.5.7. Q̃p is isomorphic to Qp (c.f. Remark 4.2.4).

Proof. This immediately follows from the universal property of the field of
fractions of an integral domain.

In [Ser70], we find another proof of Corollary 4.1.11, using this algebraic
interpretation of p-adic integers.

Proposition 4.5.8. The following sequence is exact:

0 −→ Zp
pn

−→ Zp
εn−→ Z�pnZ −→ 0.

With other words, Zp�pnZp is isomorphic to Z�pnZ.

Proposition 4.5.9. An element a ∈ Zp lies in up if and only if p - a.
Furthermore, each element a ∈ Zp can be written as a = εpn, with ε ∈ up.

For a proof of both propositions, see [Ser70] chapter 2, section 1.2.
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4.6 Lemmas of Hensel
One of Hensel’s most famous works is a theorem about the irreducibility of
polynomials, which also figures in the title of the second chapter in [Hen08]
is: “Der Zerlegung der ganzen Funktionen mit p-adischen Koeffizienten in
ihre irreduktiblen Faktoren”. We will formulate those famous theorems in
this chapter, many ideas are similar to those used in the proof of Ostrovskij’s
theorem 3.1.10. We will start with a

Definition 4.6.1. An element x ∈ Qp is called a n-th root of unity of
a ∈ Qp, if and only if xn − a = 0.

Example 4.6.2. The equation x2
0 ≡11 7 is not solvable. The polynomial

X3 − a = 0 has no solutions for a ∈ {2, 3, 4, 5, 7, 9, . . .}, but three solutions
for a = 6.

Exercise 4.6.3. Compute the square roots
√

6 and
√

7 in Z5.

Proposition 4.6.4. Just like R, the p-adic fields Qp are not algebraically
closed, for no p ∈ P.

Proof. For R we easily see that x2 + 1 = 0 has no solution in R. Now
consider the equation X2 − a over the field Qp, p 6= 2, with

(
a
p

)
= −1, i.e.

a must not be a square modulo p. For p = 2 simply chose a = 5.

We thusly need a method to quickly find solutions to polynomial equa-
tions, or to at least be able to see whether a solution exists or not. Hensel’s
first lemma gives an answer to that question.

Theorem 4.6.5 (Hensel’s first lemma). Let f(x) = ∑n
i=0 cix

i ∈ Zp[X] and
let f ′(x) be its formal derivation. If there exists an x ∈ Zp with

f(x) ≡p 0 ∧ f ′(x) 6≡p 0,

then there exists an uniquely determined a ∈ Zp such, that f(a) = 0 and
a ≡p x.

Proof. We inductively construct p-adic integers aj := ∑j
i=0 bip

i that satisfy
f(aj) ≡pj+1 0 and aj ≡p x. Evidently, to satisfy the second condition, we
must chose b0 ≡p x.
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Now assume that b0, . . . , bj−1 are already constructed. We then know
that aj = aj−1 + bjp

j and

f(aj) = f(aj−1 + bjp
j)

=
n∑
i=0

ci(aj−1 + bjp
j)i

≡p c0 +
n∑
i=1

cia
i
j−1 +

n∑
i=1

icia
i−1
j−1bjp

j

= f(aj−1) + bjp
jf
′(aj−1).

We need to fulfill f(x) ≡pj+1 0, thus f(aj−1) + bjp
jf
′(aj−1) ≡p 0. Since

f(aj−1) ≡pj 0, we have bjf
′(aj−1) ≡p −p−jf(aj−1). Furthermore, since

aj−1 ≡p x and f ′(x) 6≡p 0, thus f ′(aj−1) 6≡p 0, we have

bj ≡p −(f ′(aj−1))−1p−jf(aj−1).

Now if we take a convergent subsequence of the sequence constructed
above, then its limit point a is the desired root of f .

Remark 4.6.6. This is analog to the Newton-algorithm to find roots of
polynomials, but unlike Newton’s method, Hensels always converges.

Example 4.6.7. Do the square roots of x in Q2 exist, for any x? We don’t
know, since f ′(a0) 6≡p 0 is not possible, for any a0. What about the cubic
roots of x in Q3 for any x? Well, once again we see that f ′(a0) 6≡p 0 is not
possible, for any a0.

We therefore need a stronger Hensel!

Proposition 4.6.8 (Hensel’s second lemma). Let f(x) and f ′(x) be defined
as in Hensel’s first lemma and consider an a0 ∈ Zp with

|f(a0)|p ≤
∣∣∣f ′(a0)

∣∣∣2
p
,

then there exists an a ∈ Zp such, that f(a) = 0.

Proof. soon

Example 4.6.9. Consider f(x) = x2−33 ∈ Z2[X]. Its derivative is f ′(x) =
2X. Now chose a0 = 1, then |1− 33|2 = 2−5 < 2−2 = |2|22, thus, with
Hensel’s second lemma we know that there exists an a ∈ Z2 with f(a) = 0.

Now consider f(x) = x3 − 2188 ∈ Z3[X] and again chose a0 = 1, then
|−2188|3 = 3−7 < 3−2 = |3|23, thus, with Hensel’s second lemma we know
that there exists an a ∈ Z3 such, that f(a) = 0.
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Remark 4.6.10. PARI has methods to find roots of polynomial equations:
• polrootspadic(pol, p, r)
• factorpadic(pol,p,r)
• sqrt(x), sqrt(x,n)
• valuation(x,p)
• deriv(x,y)
• Mod(x,y)
• subst(x,y,z)

PARI Example 2 p-adic numbers in PARI - roots
PARI Input: ? a=221+O(251ˆ10)

%1 = 221 + O(251ˆ10)
? sqrt(a)

PARI Output: %2 35 + 86*251 + 145*251ˆ2 + 73*251ˆ3 + 60*251ˆ4
+ 197*251ˆ5 + 207*251ˆ6 + 9*251ˆ7 + 151*251ˆ8 + 186*251ˆ9 +
O(251ˆ10)

PARI Input: ? f=Xˆ2-a
%3 = Xˆ2 + (30 + 250*251 + 250*251ˆ2 + 250*251ˆ3 + 250*251ˆ4
+ 250*251ˆ5 + 250*251ˆ6 + 250*251ˆ7 + 250*251ˆ8 + 250*251ˆ9 +
O(251ˆ10))
? polrootspadic(f,251,10)

PARI Output: %4 = [216 + 164*251 + 105*251ˆ2 + 177*251ˆ3 +
190*251ˆ4 + 53*251ˆ5 + 43*251ˆ6 + 241*251ˆ7 + 99*251ˆ8 +
64*251ˆ9 + O(251ˆ10), 35 + 86*251 + 145*251ˆ2 + 73*251ˆ3 +
60*251ˆ4 + 197*251ˆ5 + 207*251ˆ6 + 9*251ˆ7 + 151*251ˆ8 +
186*251ˆ9 + O(251ˆ10)]

PARI Input: ? factorpadic(f,251,10)
PARI Output: %5 = (1 + O(251ˆ10))*X + (216 + 164*251 + 105*251ˆ2

+ 177*251ˆ3 + 190*251ˆ4 + 53*251ˆ5 + 43*251ˆ6 + 241*251ˆ7 +
99*251ˆ8 + 64*251ˆ9 + O(251ˆ10)) 1
(1 + O(251ˆ10))*X + (35 + 86*251 + 145*251ˆ2 + 73*251ˆ3 +
60*251ˆ4 + 197*251ˆ5 + 207*251ˆ6 + 9*251ˆ7 + 151*251ˆ8 +
186*251ˆ9 + O(251ˆ10)) 1
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4.7 Quadratic residues in the p-adic
numbers

Remark 4.7.1. An element a = ∑∞
i=0 aip

i ∈ Z∗p is a square, if and only if
a0 is a quadratic residue modulo p.

Proof. If
(
a0
p

)
= 1, then, by Hensel’s first lemma, we know that X2− a has

a zero in Z∗p. Conversely, if a0 is a quadratic residue modulo p, then there
exists no b = ∑∞

i=0 bip
i with b2

0 ≡p a0.

With this ideas, we can classify the squares in Qp:

Theorem 4.7.2. For an arbitrary prime p 6= 2, we have

a ∈ Qp is a square ⇔ a = p2n · ε2,

where n ∈ Z and ε ∈ Z∗p. The quotient group Q
∗
p�Q∗2p has order 4 and, if we

fix an u ∈ up = Z∗p with
(
u
p

)
= −1, then the set {1, p, u, up} is a complete

system of representatives.

Proof. We have to consider the polynomial f(x) = x2− a. For b ∈ Qp with
f(b) = 0 it holds that ordp(b2) = 2 · ordp(b) = ordp(a). We know that b can
be written as b = pordp(b) · ε, ε ∈ Z∗p, thus a = b2 = p2 ordp(b) · ε2. Now if
conversely we have a = p2n · ε2, then b = pn · ε.

The quadratic residues modulo p form a subgroup of
(Z�pZ)∗ of index

2, c.f. [Ser70] p.14, from which it immediately follows that ... Rest des
Beweises bald.

Theorem 4.7.3. An element a ∈ Z∗2 is a square in Z2, if and only if
a ≡8 1. The factor group Q2�Q∗22

has order 8 and a complete system of
representatives is given by {±1,±5,±2,±10}.

Proof. soon

Now, how do all those valuations play together?

Proposition 4.7.4. An element x ∈ Q is a square, if and only if, it is a
square in Qp for all p ∈ P ∪ {∞}.

Proof. Arbitrarily chose x = ±∏p∈P p
ordp(x), x 6= 0, then x is a square in

Q∞ = R if and only if x > 0 and it is a square in Qp if and only if it can
be written as x = p2n · ε2, with n ∈ Z and ε ∈ up, thus νp(x) ∈ 2Z for all
p ∈ P, which means that x is a square in Q.
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Remark 4.7.5. The above proposition is an example of the very important
local-global-principle in number theory, which states that for some types of
Diophantine equations, from the knowledge about local solutions (Qp, R), we
can conclude the existence or non-existence of global solutions, i.e. solutions
in Q.

In general, the local-global-principle does not hold:

Example 4.7.6. Consider the equation f(x) = (X2−2)·(X2−11) = 0, then
we know its roots in R to be ±

√
2 and ±

√
11 and, with Hensel’s lemmas,

we can prove the existence of p-adic roots as well, but it is clear that f has
no roots in Q.

Thus everywhere locally solvable does not always mean everywhere glob-
ally solvable!

However, in the important case of quadratic forms, a famous theorem
guarantees us that the local-global-principle holds.

Theorem 4.7.7 (Hasse-Minkowski). For a quadratic form q over Q - seen
as a homogeneous polynomial of degree 2 in n-variables with coefficients in
Q - it holds that f admits non-trivial roots in Q, if and only if, there exist
non-trivial roots in Qp, for all p ∈ P ∪ {∞}.

Proof. See for example [Ser70] chapter 4, section 3.2, theorem 8 or [Sch15].

Exercise 4.7.8. Using the local-global-principle, show that
√

2 6∈ Q.
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4.8 Roots of unity
Definition 4.8.1. Let K be a field. An element ζ ∈ K is called a n-th root
of unity, for n ∈ N, if ζn = 1. If additionally ζm 6= 1, for m ∈ N with
0 ≤ m ≤ n, then ζ is called a primitive n-th root of unity.

Now if ζ ∈ Qp with ζn = 1 for an n ∈ N, then |ζ|p = 1, which means that
all p-adic roots of unity are elements of up. Once again Hensel’s lemmas
give a complete answer to the question when p-adic roots of unity actually
exist and what they look like.

Theorem 4.8.2. Let p ∈ P be arbitrarily chosen and n ∈ N such, that
gcd(p, n) = 1, then there exists a n-th p-adic root of unity in Qp, if and
only if n | (p − 1). If a n-th root of unity exists, it is automatically a
(p− 1)-th root of unity as well and the set of all (p− 1)-th roots of unity is
a subgroup of up with index p− 1.

Proof. soon

PARI Example 3 p-adic numbers in PARI - roots of unity
PARI Input: ? polrootspadic(xˆ6-1,13,10)
PARI Output: %1 = [1 + O(13ˆ10), 3 + 11*13 + 6*13ˆ2 + 9*13ˆ3 +

7*13ˆ4 + 2*13ˆ5 + 4*13ˆ6 + 4*13ˆ7 + 8*13ˆ8 + 8*13ˆ9 + O(13ˆ10),
4 + 11*13 + 6*13ˆ2 + 9*13ˆ3 + 7*13ˆ4 + 2*13ˆ5 + 4*13ˆ6 + 4*13ˆ7
+ 8*13ˆ8 + 8*13ˆ9 + O(13ˆ10),
9 + 13 + 6*13ˆ2 + 3*13ˆ3 + 5*13ˆ4 + 10*13ˆ5 + 8*13ˆ6 + 8*13ˆ7 +
4*13ˆ8 + 4*13ˆ9 + O(13ˆ10),
10 + 13 + 6*13ˆ2 + 3*13ˆ3 + 5*13ˆ4 + 10*13ˆ5 + 8*13ˆ6 + 8*13ˆ7
+ 4*13ˆ8 + 4*13ˆ9 + O(13ˆ10),
12 + 12*13 + 12*13ˆ2 + 12*13ˆ3 + 12*13ˆ4 + 12*13ˆ5 + 12*13ˆ6 +
12*13ˆ7 + 12*13ˆ8 + 12*13ˆ9 + O(13ˆ10)]

Remark 4.8.3. The (p− 1)-th roots of unity, together with 0, constitute a
complete system of representatives for Qp, called the Teichmüller10 repres-
entative system. That is, instead of using the set {0, 1, . . . , p − 1}, we can
represent p-adic numbers using a system of roots of unity.

Remark 4.8.4. The Teichmüller lift is a map ω : F∗p → up, ω(0) = 0 and
ω(x) is the unique (p− 1)-th root of unity which is congruent to xp− ordp(x)

10Paul Julius Oswald Teichmüller (* 1913 Nordhausen; † 1943 Dnieper area (Borys-
thenes)) was a German mathematician.
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modulo p. To find the Teichmüller representative of an element x ∈ Qp,
PARI offers us the function teichmuller(x). See [Coh07] chapter 4 for fur-
ther information about this.
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4.9 Algorithms for p-adic numbers
soon, as in, probably not very soon
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